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1
SPARSE LIGHT FIELD REPRESENTATION

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority to U.S. provisional appli-
cation having Ser. No. 61/820,104, filed on May 6, 2013,
which is hereby incorporated by reference in its entirety.

BACKGROUND

1. Field

This disclosure provides techniques for representing light
fields and, in particular, a sparse representation of a light field.

2. Description of the Related Art

Light fields are typically constructed from a large set of
images of a scene, captured at different viewing positions.
One can capture a light field using a single photo diode, an
array of cameras, a single camera taking a single image with
a coded aperture, etc. At its simplest, the light field may be
captured by simply taking a number of photographs.

Light fields having high spatial-angular resolution, such as
3D light fields constructed from hundreds of high resolution
2D images with their respective optical centers distributed
alonga 1D line or light fields created with a camera array, can
take up enormous storage space. In addition, such light fights
may be difficult to process efficiently if, for example, the full
input light field must be kept in memory.

SUMMARY

One aspect of the disclosure includes a computer imple-
mented method for generating a sparse representation of a
light field. The method includes receiving the light field cap-
tured as a plurality of images depicting a scene. The method
further includes receiving depth estimates of points in the
scene, and determining an error between a reconstruction
from the depth estimates and the received images. In addition,
the method includes storing the depth estimates and the error.

Other aspects include a computer-readable medium that
includes instructions that enable a processing unit to imple-
ment one or more aspects of the disclosed methods as well as
a system configured to implement one or more aspects of the
disclosed methods.

BRIEF DESCRIPTION OF THE DRAWINGS

The patent or application file contains at least one drawing
executed in color. Copies of this patent or patent application
publication with color drawing(s) will be provided by the
Office upon request and payment of the necessary fee.

So that the manner in which the above recited aspects are
attained and can be understood in detail, a more particular
description of aspects of the disclosure, briefly summarized
above, may be had by reference to the appended drawings.

It is to be noted, however, that the appended drawings
illustrate only typical aspects of this disclosure and are there-
fore not to be considered limiting of'its scope, for the disclo-
sure may admit to other equally effective aspects.

FIG. 1 illustrates an approach for estimating depth from
high spatio-angular resolution light fields, according to an
aspect of the disclosure.

FIG. 2 illustrates a sparse representation for storing light
field data, according to an aspect of the disclosure.

FIG. 3 illustrates a method for storing light field data in a
sparse representation format, according to an aspect of the
disclosure.
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FIG. 4 illustrates a method for estimating depth in a scene,
according to an aspect of the disclosure.

FIG. 5 illustrates a system in which an aspect may be
implemented.

DETAILED DESCRIPTION

Aspects disclosed herein provide techniques for storing
light field data. Given a light field constructed from multiple
images, depth estimates of scene points are stored together
with an error between a reconstruction from the depth esti-
mate and the multiple images.

FIG. 1 illustrates an approach for estimating depth from
high spatio-angular resolution light fields, according to an
aspect of the disclosure. [llustratively, the light field may be a
three-dimensional (3D) light field constructed from multiple
high-resolution two-dimensional (2D) images with optical
centers distributed along a one-dimensional (1D) line. Panel
A shows two such 2D images 101, 102, which may be cap-
tured in any feasible manner, such as with a camera array,
using a camera on a motorized linear stage, etc. As discussed
in greater detail below, techniques disclosed herein are also
generalizable to higher dimensions (e.g., four-dimensional
(4D) input light fields and unstructured light fields).

A 3D light field with radiance values captured in RGB
color space may be denoted as a map L:R *— R >. The radi-
ance reR * of a light ray may then be given as r=L(u, v, s),
where s describes the 1D ray origin and (u, v) represents the
2D ray direction. Here, s may be interpreted as different
camera positions and/or cameras distributed along a 1D line,
and (u, v) may be interpreted as pixel coordinates in a corre-
sponding image I (u, v). It will be assumed herein, for the
sake of simplicity, that u, v, s are regularly and uniformly
sampled, i.e., the optical centers are uniformly spaced and all
captured images are rectified, so that epipolar lines of a scene
point coincide with the same horizontal scanline in all
images. One way to achieve such regular and uniform sam-
pling is by mounting a camera on a motorized linear stage,
capturing images at a uniform spacing (e.g., 1 cm between
camera positions), and approximating a regularly sampled 3D
light field by correcting the captured images for lens distor-
tion and compensating for mechanical inaccuracies of the
motorized linear stage (by, e.g., estimating the camera poses,
computing the least orthogonal distance line from all camera
centers as a baseline, and then rectifying all images with
respect to the baseline).

A given u-v slice of the light field L. for a fixed s corre-
sponds to input image I, while a u-s slice for a fixed v
coordinate corresponds to an “epipolar-plane image” (EPI),
which is, intuitively, a stack of the same row v taken from all
input images. Panel B illustrates an exemplary EPI 110. As
shown in panels A and B, lines 1014, 1024 represent both the
respective s-parameters of the two input images as well as the
v-parameter in the input images from which the EPI 110 is
constructed. Note, in panel A the lines 101a, 102a each mark
a v coordinate, whereas in panel B the lines each mark an s
coordinate.

An EPI will be denoted herein as E,: R >—R 3, with radi-
ance r=E,, (u, s) of a ray at a position (u, s). EPIs of 3D light
fields may exhibit high ray coherence and include redundant
information. The term EPI-pixel (u, s) is used herein instead
of the term ray at (u, s) for disambiguation. Further, the
subscript v will be omitted for notational simplicity, as tech-
niques disclosed herein consider mostly individual EPIs
where the parameter v is fixed.

When the ray space of L. is sampled densely enough, each
scene point appears as a line segment in an EPI with the slope
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of the line segment depending on the scene point’s depth.
Panel B shows examples of such line segments 111, having
slopes that depend on depth. Let I" be the set of line segments
originating at various locations in the input EPI E. Construct-
ing I amounts to computing line slopes at the EPI pixels, i.e.,
estimating the depth of scene points. As discussed in greater
detail below, a sparse representation application (not shown)
may employ a fine-to-coarse strategy which estimates depth
at edges in an EPI at a highest image resolution first. Esti-
mated depths are then propagated throughout the EPI (in
s-direction), after which the EPI is iteratively downsampled
to coarser resolutions, and depths which were not previously
determined are estimated in a similar manner at those coarser
resolutions. Note, this depth estimation strategy is optional.
Any feasible technique that permits computation of depth
estimates may be used, such as other stereo reconstruction
methods over multi-view stereo or active scanners (e.g., a
Kinect, laser scanner, structured light scanner). The sparse
light field representation discussed herein is advantageous in
that, even ifthe depth estimates are wrong, computation of the
“difference EPI” still permits the original input images to be
represented (the difference EPI simply gets less sparse and
compression less good, as it has to compensate for errors of a
poor depth estimator).

The estimated depths may be used to produce depth maps,
e.g., depth maps 121, 122 illustrated in panel C, which have a
number of applications. Aside from generating a 3D model of
the scene, the depth maps 121, 122 may be used in automatic
segmentation and image-based rendering, among other
things. For example, in automatic segmentation such as back-
ground removal, pixels within a prescribed depth interval
may simply be thresholded. As another example, the scene
may be directly visualized using the depth maps as a colored
3D point cloud via splat-based rendering, with the ability to
look around occluding objects.

FIG. 2 illustrates a sparse representation for storing light
field data, according to an aspect of the disclosure. As dis-
cussed, in densely sampled ray spaces, each scene point may
appear as a line segment in an EPI, which is a u-s slice of the
light field L for a fixed v coordinate. Panel A shows an
exemplary EPI 210.

The slope of line segments in the EPI correspond to respec-
tive scene points’ depths, and EPIs of 3D light fields typically
exhibit high coherence and contain redundant information
that can be utilized for a more efficient representation. In
particular, rather than storing the full EPI, the EPI may be
reconstructed by knowing the parameters of line segments.
The sparse light field representations disclosed herein utilizes
this fact, and further, specifically considers completeness and
variation of the represented light field. Completeness of a
representation may be compromised where a large amount of
captured light rays are occluded in any part of the EPI. Varia-
tion in the light field may arise where scene points change
their color along their corresponding line segment in the EPI
due to specularities or other view-dependent effects. As a
result of such occlusions and light field variations, simply
collecting and storing line segments and their color along
single horizontal lines of the EPI may lack completeness and
may not capture the variations in the light field.

Aspects disclosed herein address the issues of occlusions
and light field variations discussed above. According to one
aspect, a sparse representation application samples and stores
aset I" of line segments originating at various locations in the
input EPI E, until the entire EPI is represented and redun-
dancy is eliminated to the extent possible, as discussed in
greater detail below. In addition, the sparse representation
application may determine and store a difference EPI AE that
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4

accounts for variations in the light field. More specifically, the
slope m of a line segment associated with a scene point at
distance z is given by

®
m=—=

£
d fib

where d is the image space disparity defined for a pair of
images captured at adjacent positions or, equivalently, the
displacement between two adjacent horizontal lines in the
EPL f, is the horizontal focal length in pixels and b is the
metric distance between each adjacent pair of imaging posi-
tions. Correspondingly, an EPI line segment may be com-
pactly described by a tuple I=(m, u, s, r¥), where r is the
average color of the scene point in the EPL I is then the set of
all tuples 1. Techniques for generating the tuples 1 are dis-
cussed in greater detail below. Additional tuples may be
stored in regions which are occluded, thereby ensuring com-
pleteness. From the set I' of line segments, a reconstructed
EPI E may be generated by rendering the line segments in the
order of decreasing slopes, i.e., rendering the scene points
from back to front. In one configuration, I'may be stored as an
ordered list of tuples In order of decreasing slopes for efficient
EPI reconstruction.

In addition to T, the sparse representation application may
determine a difference AB=E-F between the input EPI E and
the reconstruction E. Note, the difference AE, also referred to
herein as the “error,” captures the variation and detail infor-
mation in the light field, such as view dependent effects. Panel
B illustrates an exemplary error EPI 220. A high value of AE
may occur, e.g., at specularities and at inaccurate slope esti-
mates.

TheI" and AE for all EPIs generated from the input images,
taken together, compactly store all relevant information that
is necessary to reconstruct the full 3D light field as well as
extract an arbitrary input image with a corresponding depth
map, or a full 3D point cloud, among other things. One such
I"and AE 220 pair is shown in panel B. Experience has shown
that this sparse representation may be stored using 5-20% of
the space required to store some red-green-blue (RGB) EPIs.

FIG. 3 illustrates a method 300 for storing light field data in
a sparse representation format, according to an aspect of the
disclosure. As shown, at step 310, a sparse representation
application receives a plurality of images of a scene, which
together form a light field. In one configuration, a 3D light
field may be constructed from multiple high-resolution 2D
images with optical centers distributed along a 1D line, as
discussed above.

At step 320, the sparse representation application receives
depth estimates of scene points. Such depth estimates may be
made by the sparse representation application itself using the
received images (i.e., the depth estimates received are also
made by the sparse representation application). However, the
depth estimates need not be made by the sparse representation
application. For example, the depth estimates may simply be
retrieved from a storage location.

In one configuration, estimating depth of scene points may
be equivalent to determining the line slopes at EPI pixels.
Such line slopes may be used to construct the set I' of tuples
I=(m, u, s, rT), which may be an ordered list of tuples ln order
of decreasing slopes for efficient EPI reconstruction.

In one configuration, the sparse representation application
may employ a fine-to-coarse estimation approach to estimate
depth. In such a case, regions where the depth estimation is
expected to perform well may first be identified in the full-
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resolution of an EPI E using an edge confidence test. In one
configuration, the sparse representation application may
compute edge confidence measures C, for each EPI-pixel and
generate a binary mask M, having value 1 for pixels for which
C, is greater than a given threshold, and 0 otherwise.

Using binary mask M_, the sparse representation applica-
tion may generate depth estimates for EPI-pixels with high
edge confidence. As discussed in greater detail below, the
sparse representation application may, in one configuration,
test a number of discrete depth hypotheses d and pick a depth
that leads to a highest color density of sampled EPI-pixels.
The depth estimate itself is used to improve the initial confi-
dence toward a refined depth confidence C,, which provides
a good indicator of the reliability of particular depth esti-
mates. The depth estimate may also be propagated throughout
the EPI. This process of depth estimation and propagation
may be iterated until all EPI-pixels with high edge confidence
have been processed. After one iteration, sufficiently detailed
regions at the highest resolution level of the EPI E have a
reliable depth value assigned, while the depth in more
homogenous regions (which were masked out) remain
unknown.

After estimating depth at the full resolution, the sparse
representation application may downsample the EPI E to
coarser resolutions. At each resolution level, the sparse rep-
resentation application may determine edge confidence for
EPI-pixels which are not yet processed, estimate depths of
EPI-pixels with high edge confidence, and propagate the
depth estimates. This iterative procedure produces depth esti-
mates for all EPI-pixels, and the procedure may be repeated
for all EPIs.

At step 330, the sparse representation application deter-
mines an error between a reconstruction from the depth esti-
mates and the input images which accounts for variations in
the light field. As discussed, the sparse representation appli-
cation may estimate (or receive) depth of a scene point as the
slope m of a line segment associated with the point at distance
7 using equation (1), and store each EPI line segment com-
pactly as a tuple I=(m, u, s, r”), where r is the average color of
the scene point in the EPI. Given the set I of all tuples 1, the
sparse representation application may compute the error
between a reconstructed EPI, having lines defined by the
tuples 1, and the EPI generated from the input images as the
difference AE=E-E, where E is the reconstruction using the
set ' of all tuples 1. As discussed, a high value of AE may
occur, e.g., at specularities and at inaccurate slope estimates.

At step 340, the sparse representation application stores the
depth estimates and the error in a storage device. In one
configuration, the sparse representation application may store
the set I' of all tuples 1, as well as the difference EPI AE,
discussed above. Taken together, the I" and AE, for all EPIs
generated from the input images, compactly store informa-
tion needed to reconstruct the full 3D light field, as well as to
extract an arbitrary input image with a corresponding depth
map, ora full 3D point cloud, among other things. Experience
has shown that I' and AE may be stored using 5-20% of the
space required to store some red-green-blue (RGB) EPIs. The
stored I" and AE may be used to reconstruct the full 3D light
field, as well as extract an arbitrary input image with a corre-
sponding depth map, or a full 3D point cloud, among other
things.

FIG. 4 illustrates a method 400 for estimating depth in a
scene, according to an aspect of the disclosure. As discussed,
in one configuration, a sparse representation application may
itself estimate depth from received images. Illustratively, the
method 400 begins at step 410, where the sparse representa-
tion application receives a plurality of images of a scene,
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which together form alight field. For example, a 3D light field
may be constructed, e.g., from multiple high-resolution 2D
images with optical centers distributed along a 1D line, as
discussed above.

At step 420, the sparse representation application gener-
ates EPIs from the plurality of images. For example, for 3D
light fields, an EPI may be generated by simply stacking the
same row v from all input images as a u-s slice of the light
field L. for a fixed v coordinate corresponds to an EPI.

For a given EPI, the sparse representation application
determines edge confidence at step 430. In one configuration,
the sparse representation application may compute the fol-
lowing difference measure:

Ce(uls)zxu'aN(u,s)HE(uJS)_E(u ',S)Hza (2)

where N(u, s) is a 1D window in EPI E around pixel (u, s) and
may be a small neighborhood (e.g., 9 pixels), as it may simply
measure local color variation. C, may be fast to compute, and
may be thresholded to give a binary confidence mask M,. For
example, the threshold may have value 0.02, with the binary
confidence mask M, having value 1 for pixels for which C, is
greater than 0.02, and 0 otherwise. Spurious isolated regions
may also be removed by, e.g., applying a morphological
opening operator to the mask M,.

At step 440, the sparse representation application com-
putes depth estimates for pixels in the given EPI which are
above an edge confidence threshold. Such EPI-pixels with
high reliability are stored as tuples In 1 in the set I of tuples
and, as discussed in greater detail below, propagated through-
out the EPI. Where a binary confidence mask M, is deter-
mined, the sparse representation application may compute
depth estimates for those EPI pixels marked as confident in
M, to prevent computing depth estimates at ambiguous EPI
pixels, thereby speeding up depth computation without sac-
rificing accuracy. In one configuration, the depth estimates
may be computed per scanline of an EPI, i.e., a fixed param-
eters may be selected and a depth estimate computed for E(u,
§) with M, (u, §)=1. In one configuration, the sparse represen-
tation application may begin by settings § to a scanline at the
center of the EPI, estimate depth for EPI-pixel of that scan-
line, propagate those estimates as discussed in greater detail
below, then set § to the nearest s with respect to the center of
the EPI that still has unprocessed pixels, and so forth, until all
edge-confident EPI-pixels have been processed or masked
out during propagation.

The sparse representation application may assign a depth z,
or equivalently a disparity d, to each EPI-pixel (u, §). For a
hypothetical disparity d, the set R of radiances or colors of
EPI-pixels may be sampled as

R(u,dy={E(u+($-s)d,s)ls=1,. .., n}, 3)

where n is the number of views in the light field. From the
density of radiance values in R(u, d), a depth score S(u, d)
may be computed in linearized RGB color space. This
assumes that that the scene is essentially Lambertian, i.e., that
a setis likely to represent an actual scene point if the radiance
samples are densely positioned in the underlying color space.

In one configuration, the sparse representation application
may compute the density using iterations of a modified
Parzen window estimation with an Epanechnikov kernel,
with the initial depth score defined as

@)

1 —
S(u, d) = m@;m K(r—7),
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where r=E(u, 8) is the radiance value at the current EPI-pixel,
and the kernel is

o= 5] =2

and O otherwise. Here, h is the bandwidth parameter and may
be set to, e.g., h=0.02. In alternative configurations, other
kernels may be used such as Gaussian or other bell-shaped
kernels. To reduce the influence of noisy radiance measure-
ments, the sparse representation application may compute an
iteratively updated radiance mean

> Kir=mr
- reR

2 Kir-n)
reR

to plug into equation (4). Experience has shown that robust-
ness to noise may be achieved after only a few iterations, e.g.,
10 iterations.

For each EPI pixel (u, §), the sparse representation appli-
cation may compute scores S(u, §) for an entire range of
admissible disparities d, and assign the disparity with the
highest score as the pixel’s depth estimate

D(u,$)=arg max ;S(u,d). (5)

The sparse representation application may further compute
arefined confidence C; as a measure of reliability of the depth
estimate. Low-confidence depth estimates may be discarded
and marked for re-computation at a later stage. In one con-
figuration, the refined confidence C, may combine the edge
confidence C, with the difference between the maximum
score S, .=max, S(u, d) and the average score S=2 _S(u, d)

Coltt, §)=C Lt )IS =S| Q)

Note, the refined confidence C; combines two complemen-
tary measures. For example, noisy regions of an EPI would
result in a high edge-confidence C,, while a clear maximum
S,uae 18 not available. Similarly, ambiguous homogenous
regions in an EPI, where C, is low, can produce a strong, but
insufficiently unique S,,,.. Each confident depth estimate,
i.e., D(u, §) where C ,(u, s)>€, may be stored as a line segment
tuple 1=(m, u, s, r¥) in ', where r represents the mean radiance
of R(u, d), and m is the slope of the line segment computed
from d as m=1/d.

In one configuration, the sparse representation application
may apply a median filter on the computed depths to attempt
to eliminate the influence of outliers. A straightforward
median filter may not result in the precise localization of
silhouettes. The sparse representation application may
instead use a bilateral median filter that preserves the local-
ization of depth discontinuities by leveraging information
from the radiance estimates of nearby EPIs. Such a bilateral
median filter may be implemented by replacing depth values
D, (u, §) with the median value of the set

(D' D)1’V )N, v8), [E,(,9)-E () |<eM ("
vi=1},

M
where (u', v', §)eN(u, v, §) denotes a small window over I,
(e.g., awindow of size 11x11 pixels), and the color tolerance
threshold e is, e.g., e=0.1. Note, increasing the color tolerance
€ and the kernel bandwidth h, discussed above, compared to
other default values increases robustness to noise, whereas
small values of € and h preserve finer details. In equation (7),
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the second condition ensures that only EPI-pixels of similar
radiance are considered, and the third condition masks out
EPI-pixels lacking confidence for which no depth estimation
is available.

At step 450, the sparse representation application propa-
gates the depth estimates to other EPI-pixels. As discussed,
each confident depth estimate D(u, §) may be stored as a line
segment tuple I=(m, u, s,7) in I, where is the mean radiance
of (u, §), namely

> Kir=mr
- reR

Y Kor-m
reR

In one configuration, the depth estimate may be propagated
along the slope of its corresponding EPI line segment to all
EPI-pixels (u', §) having a radiance similar to the mean radi-
ance, i.e., |[EQu, s")-r|l<e. This is a conservative visibility
estimate and ensures that foreground objects in the EPI are
not overwritten by background objects during propagation. In
an alternative configuration, the sparse representation appli-
cation may use full mean shift clustering, and propagate the
depth estimate to cluster elements. As discussed, the sparse
representation application may, after depth estimate propaga-
tion, set § to the nearest s with respect to the center of the EPI
that still has unprocessed pixels, and so forth, until all edge-
confident EPI-pixels have been processes or masked out by
propagation.

At step 460, the sparse representation application itera-
tively downsamples the EPI and repeats, after each down-
sampling, the determining of edge confidence of step 430,
computing of depth estimates of step 440, and propagating of
depth estimates of step 450. Parts of the EPI without assigned
depth values were either previously ambiguous due to
homogenous colors (i.e., insufficient edge confidence), or
have strongly view-dependent appearance (i.e., insufficient
depth confidence). A fine-to-coarse strategy may be used to
compute depth in such less detailed and less reliable regions
by exploiting the regularizing effect of an iterative downsam-
pling of the EPI. Further, to enhance robustness and effi-
ciency, the sparse representation application may use previ-
ously computed confident depth estimates as depth interval
bounds for depth estimation at coarser resolutions.

In one configuration, the sparse representation application
may use the upper and lower bounds of the closest reliable
depth estimates in each horizontal row of the EPI as the depth
bound estimates. Then the sparse representation application
may downsample the EPI (e.g., by a factor of 0.5) along the
spatial u and v directions, while the resolution along the
angular s-dimension is preserved. The sparse representation
application may smooth the EPI along the spatial dimensions
using, e.g., a 7x7 Guassian filter with standard deviation o=
V0.3 to avoid aliasing. After downsampling, the sparse rep-
resentation application may perform edge confidence estima-
tion, depth estimation, and propagation at the coarser resolu-
tion. EPI-pixels with reliable depth estimates computed at
higher resolutions may not be considered again, aside from
being used for deriving the depth bounds discussed above.
This fine-to-coarse process may be iterated through all levels
of the EPI pyramid until any of the image dimensions
becomes less than a given size (e.g., 10 pixels). At the coarsest
level, the sparse representation application may assign depth
estimates to all pixels regardless of confidence.
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At step 470, the sparse representation application succes-
sively upsamples depth estimates at coarse resolution levels
to the respective higher resolution levels and assigned to the
corresponding higher-resolution EPI-pixels without a depth
estimate, until all EPI-pixels at the finest resolution level have
a corresponding depth estimate. In one configuration, the
sparse representation application may remove spurious
speckles by, e.g., applying a 3x3 median.

If there are more EPIs, then at step 480, the method 400
returns to step 430, and another EPI is processed.

FIG. 5 depicts a block diagram of a system in which an
aspect may be implemented. As shown, the system 500
includes, without limitation, a central processing unit (CPU)
510, a network interface 530, an interconnect 515, a memory
560 and storage 520. The system 500 may also include an /O
device interface 540 connecting /O devices 550 (e.g., key-
board, display and mouse devices) to the system 500.

The CPU 510 retrieves and executes programming instruc-
tions stored in the memory 560. Similarly, the CPU 510 stores
and retrieves application data residing in the memory 560.
The interconnect 515 facilitates transmission, such as of pro-
gramming instructions and application data, between the
CPU 510, I/O device interface 540, storage 520, network
interface 530, and memory 560. CPU 510 is included to be
representative of a single CPU, multiple CPUs, a single CPU
having multiple processing cores, and the like. In other
aspects, one or more graphics processing units (GPUs) may
be used in lieu of, or in conjunction with, the CPU 510. And
the memory 560 is generally included to be representative of
arandom access memory. The storage 520 may be, e.g., adisk
drive storage device. Further, system 500 is included to be
representative of a physical computing system as well as
virtual machine instances hosted on a set of underlying physi-
cal computing systems. Further still, although shown as a
single computing system, one of ordinary skill in the art will
recognized that the components of the system 500 shown in
FIG. 5 may be distributed across multiple computing systems
connected by a data communications network.

As shown, the memory 560 includes an operating system
561 and sparse representation application 562. Illustratively,
the operating system may include Microsoft’s Windows®.
The sparse representation application 562 is configured to
determine depth estimates based on light fields and store a
sparse light field representation which includes the depth
estimates and an error between a reconstruction from the
estimates and input light field images. In one configuration,
the sparse representation application 562 may store a set I" of
tuples 1=(m, u, s, r¥) generated from received depth estimates,
determine a difference AE=E-E between the input EPI E and
the reconstruction generated by rendering the line segments
described by the tuples 1, and store the set I and the difference
AE as a sparse representation 522 of the light field, according
to the method 300 discussed above. In addition, the sparse
representation application 562 may itself estimate depth
based on given input images 521 by, generating EPIs, deter-
mining edge confidence for EPI-pixels, estimating depths of
EPI-pixels with high edge confidence, propagating the depth
estimates, and repeating this process with iteratively down-
sampled EPIs, according to the method 400 discussed above.

Although discussed above primarily with respect to a loss-
less sparse light field representation from which the full light
field may be reconstructed, alternative configurations may
also apply, e.g., lossy compression to further reduce the size
of' the representation. An example of such lossy compression
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is JPEG compression, which may be applied to the difference
EPI AE.

Although discussed above primarily with respect to a regu-
larly sampled 3D light field, techniques disclosed herein may
be readily adapted to other light fields, such as 4D light fields
and unstructured light fields. In a regular 4D light field, cam-
era centers are horizontally and vertically displaced, leading
to a 4D parametrization of rays as r=L(u, v, s, t), where t
denotes the vertical ray origin. The ray sampling of equation
(3) may then be extended to

R(u,vs,t, d)={L(u+E-)dv+(-1),d,s,0ls=1, . . ., ni=
1,...,m},

®)

where (§, 1) is the considered view and m denotes the number
of vertical viewing positions. As a result, sampling may be
performed in a 2D plane in a 4D ray space, also referred to
herein as a “3D epipolar (plane) volume,” as opposed to the
1D line in the case of 3D light fields. The depth propagation
may take place along both s- and t-directions. Additionally,
the tuples 1 may represent planes, and be stored together with
reconstruction error AE, which may be a 3D error epipolar
(plane) volume.

For arbitrary, unstructured input (e.g., an unstructured light
field or unstructured set of images), camera poses may be
estimated to determine the set of sampled rays for a depth
hypothesis. For example, camera poses may be estimated,
using structure-from-motion techniques, from the input
images of a scene that are used to construct a light field.
Having the camera poses means that the relative positions and
orientations are known of the camera viewpoints for all input
images. With this information available, it can be determined
where a scene point is projected in each input image, and the
pixels collected from those projected positions in input
images form the set of sampled rays mentioned above.

In one configuration, each considered pixel may be sent to
3D space in accordance with the hypothesized depth, and then
the 3D position may be re-projected to the image coordinate
systems of all other views to obtain the sampling positions.
The set of sampled rays becomes

R(uys,dy={L'v's)ls=1,. .., nP "t fuv'fd]’=P, "

[wfa]'}, (©)
where P, denotes the camera projection matrix of view s, and
fis the camera focal length. The depth estimate may then be
depth or disparity maps or any other form of 3D representa-
tion/model of the depicted scene, such as a point cloud, tri-
angle mesh, or any other surface representation. Such depth
estimates may be stored together with reconstruction error
AE.

Advantageously, techniques disclosed herein permit light
fields having high spatial-angular resolution to be stored in a
compact representation that reduces storage space require-
ments. The compact representation may handle both occlu-
sions and light field variations, storing all relevant informa-
tion necessary to reconstruct the full light field as well as
extract an arbitrary input image with a corresponding depth
map, or a full 3D point cloud, among other things. Further, the
compact representation enables efficient parallel processing
of input light fields, as the full light fields need not be kept in
memory.

The foregoing description references aspects of the disclo-
sure. However, it should be understood that the disclosure is
not limited to specific described aspects. Instead, any combi-
nation of the following features and elements, whether related
to different aspects or not, is contemplated to implement and
practice the disclosure. Furthermore, although aspects of the
disclosure may achieve advantages over other possible solu-
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tions and over the prior art, whether or not a particular advan-
tage is achieved by a given aspect is not limiting of the
disclosure. Thus, the following aspects, features, and advan-
tages are merely illustrative and are not considered elements
or limitations of the appended claims except where explicitly
recited in a claim(s). Likewise, reference to “the disclosure”
shall not be construed as a generalization of any inventive
subject matter disclosed herein and shall not be considered to
be an element or limitation of the appended claims except
where explicitly recited in a claim(s).

Aspects of the present disclosure may be embodied as a
system, method or computer program product. Accordingly,
aspects of the present disclosure may take the form of an
entirely hardware aspect, an entirely software aspect (includ-
ing firmware, resident software, micro-code, etc.) or an aspect
combining software and hardware aspects that may all gen-
erally be referred to herein as a “circuit,” “module” or “sys-
tem.” Furthermore, aspects of the present disclosure may take
the form of a computer program product embodied in one or
more computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus or device.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality and operation of possible
implementations of systems, methods and computer program
products according to various aspects of the present disclo-
sure. In this regard, each block in the flowchart or block
diagrams may represent a module, segment or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). In some
alternative implementations the functions noted in the block
may occur out of the order noted in the figures. For example,
two blocks shown in succession may, in fact, be executed
substantially concurrently, or the blocks may sometimes be
executed in the reverse order, depending upon the function-
ality involved. Each block of the block diagrams and flow-
chart illustrations, and combinations of blocks in the block
diagrams and flowchart illustrations can be implemented by
special-purpose hardware-based systems that perform the
specified functions or acts, or combinations of special pur-
pose hardware and computer instructions.

While the foregoing is directed to aspects of the present
disclosure, other and further aspects may be devised without
departing from the basic scope thereof, and the scope thereof
is determined by the claims that follow.
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What is claimed is:

1. A computer-implemented method for generating and
storing a compact representation of a light field, comprising:

receiving the light field captured as a plurality of images

depicting a scene, wherein the light field is one of a
three-dimensional (3D) light field and a four-dimen-
sional (4D) light field;

receiving depth estimates of points in the scene;

determining an error between a reconstruction from the

depth estimates and the received images; and

storing, in computer storage hardware, the compact repre-

sentation of the light field which includes the depth
estimates and the determined error,

wherein, when the light field is the 3D light field, the depth

estimates include slopes of lines at pixels of epipolar-
plane images (EPIs) generated from the plurality of
images, the reconstruction includes one or more EPIs
generated based on the slopes, and the error is an error
between the EPIs generated from the plurality of images
and the one or more reconstructed EPIs, and

wherein, when the light field is the 4D light field, the depth

estimates include planes passing through pixels of 3D
epipolar (plane) volumes generated from the plurality of
images, the reconstruction includes one or more 3D
epipolar (plane) volumes generated based on the planes,
and the error is an error between the 3D epipolar (plane)
volumes generated from the plurality of images and the
one or more reconstructed 3D epipolar (plane) volumes.

2. The method of claim 1, wherein, when the light field is
the 3D light field, the depth estimates are stored as tuples each
representing a respective one of the lines and having form
1=(m, u, s, ), where m is a slope, (u, s) is a point, and r is an
average color of the point (u, s) in one of the EPIs.

3. The method of claim 2, wherein the tuples are stored in
order of decreasing slope.

4. The method of claim 1, wherein, when the light field is
the 4D light field, the depth estimates are stored as tuples 1
each representing a respective one of the planes.

5. The method of claim 1, wherein the light field further
includes an unstructured light field or unstructured set of
images, and wherein the depth estimates further include one
of'a depth map, a disparity map, and a 3D representation or
model of the scene associated with the unstructured light
field.

6. The method of claim 1, wherein, when the light field is
the 3D light field, the received depth estimates of points in the
scene are estimated by:

generating the EPIs from the plurality of images;

iteratively downsampling the EPIs to coarser resolutions;

and

at each of the iterations, for each of the EPlIs:

determining edge confidence scores for pixels of the
EPI,

determining depth estimates for the pixels of the EPI
associated with edge confidence scores above a
threshold value, and

propagating the depth estimates to other pixels of the
EPL

7. The method of claim 1, further comprising, reconstruct-
ing the light field based on the stored depth estimates and the
stored error.

8. The method of claim 1, further comprising, extracting an
image and a corresponding depth map, or a full point cloud,
based on the stored depth estimates and the stored error.

9. A non-transitory computer-readable storage medium
storing instructions, which when executed by a computer
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system, perform operations for generating and storing a com-
pact representation of a light field, the operations comprising:
receiving the light field captured as a plurality of images
depicting a scene, wherein the light field is one of a
three-dimensional (3D) light field and a four -dimen-
sional (4D) light field;

receiving depth estimates of points in the scene;

determining an error between a reconstruction from the

depth estimates and the received images; and

storing, in computer storage hardware, the compact repre-

sentation of the light field which includes the depth
estimates and the determined error,

wherein, when the light field is the 3D light field, the depth

estimates include slopes of lines at pixels of epipolar-
plane images (EPIs) generated from the plurality of
images, the reconstruction includes one or more EPIs
generated based on the slopes, and the error is an error
between the EPIs generated from the plurality of images
and the one or more reconstructed EPIs, and

wherein, when the light field is the 4D light field, the depth

estimates include planes passing through pixels of 3D
epipolar (plane) volumes generated from the plurality of
images, the reconstruction includes one or more 3D
epipolar (plane) volumes generated based on the planes,
and the error is an error between the 3D epipolar (plane)
volumes generated from the plurality of images and the
one or more reconstructed 3D epipolar (plane) volumes.

10. The computer-readable storage medium of claim 9,
wherein, when the light field is the 3D light field, the depth
estimates are stored as tuples each representing a respective
one of the lines and having form 1=(m, u, s, r*), where m is a
slope, (u, s) is a point, and r is an average color of the point (u,
s) in one of the EPIs.

11. The computer-readable storage medium of claim 10,
wherein the tuples are stored in order of decreasing slope.

12. The computer-readable storage medium of claim 9,
wherein, when the light field is the 4D light field, the depth
estimates are stored as tuples 1 each representing a respective
one of the planes.

13. The computer-readable storage medium of claim 9,
wherein the light field further includes an unstructured light
field or unstructured set of images, and wherein the depth
estimates further include one of a depth map, a disparity map,
and a 3D representation or model of the scene associated with
the unstructured light field.

14. The computer-readable storage medium of claim 9,
wherein, when the light field is the 3D light field, the received
depth estimates of points in the scene are estimated by:

generating the EPIs from the plurality of images;
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iteratively downsampling the EPIs to coarser resolutions;
and
at each of the iterations, for each of the EPlIs:
determining edge confidence scores for pixels of the
EPI,
determining depth estimates for the pixels of the EPI
associated with edge confidence scores above a
threshold value, and
propagating the depth estimates to other pixels of the
EPL
15. The computer-readable storage medium of claim 9,
further comprising one of reconstructing the light field based
on the stored depth estimates and the stored error and extract-
ing an image and a corresponding depth map, or a full point
cloud, based on the stored depth estimates and the stored
error.
16. A system, comprising:
a processor; and
a memory, wherein the memory includes an application
program configured to perform operations for generat-
ing and storing a compact representation of a light field,
the operations comprising:
receiving the light field captured as a plurality of images
depicting a scene, wherein the light field is one of a
three-dimensional (3D) light field and a four-dimen-
sional (4D) light field,
receiving depth estimates of points in the scene,
determining an error between a reconstruction from the
depth estimates and the received images, and
storing, in computer storage hardware, the compact rep-
resentation of the light field which includes the depth
estimates and the determined error,
wherein, when the light field is the 3D light field, the
depth estimates include slopes of lines at pixels of
epipolar-plane images (EPIs) generated from the plu-
rality of images, the reconstruction includes one or
more EPIs generated based on the slopes, and the
error is an error between the EPIs generated from the
plurality of images and the one or more reconstructed
EPIs, and
wherein, when the light field is the 4D light field, the
depth estimates include planes passing through pixels
of 3D epipolar (plane) volumes generated from the
plurality of images, the reconstruction includes one or
more 3D epipolar (plane) volumes generated based on
the planes, and the error is an error between the 3D
epipolar (plane) volumes generated from the plurality
of images and the one or more reconstructed 3D epi-
polar (plane) volumes.
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